Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation?
نویسندگان
چکیده
Australian desert frogs of the genera Neobatrachus, Cyclorana and Heleioporus experience significant dehydration, and iono- and osmoconcentration, during aestivation in the laboratory and accumulate substantial amounts of urea (100-200 mmol)(l-1). We expected a priori that aestivating frogs probably would not need to accumulate balancing osmolytes but would accumulate trimethylamine oxide (TMAO) or betaine as counteracting solutes to urea. These aestivating frogs did not co-accumulate a substantial quantity of any particular balancing osmolyte or counteracting solute, such as a methylamine [TMAO, trimethylamine amine (TMA), betaine, sarcosine, glycerophosphorylcholine (GPC)] or polyol (inositol, mannitol, sorbitol) in plasma or muscle relative to urea accumulation. However, for aestivating frogs, the total concentration of all measured methylamines and polyols (TMAO + TMA + betaine + sarcosine + GPC + inositol) in muscle was approximately 35-45 mmol kg-1, and so it is possible that all of these solutes have a combined counteracting osmolyte role in aestivating frogs at a ratio to urea of approximately 1:2.5, as has been described for elasmobranch fishes. Alternatively, the absence of substantial co-accumulation with urea of any particular solute suggests that aestivating frogs might not require any major extracellular or intracellular counteracting solutes (TMAO, betaine, GPC). The enzyme systems of these aestivating frogs may be insensitive to the perturbing effects of urea, or the perturbing effects of accumulated urea may be a mechanism for metabolic depression, during aestivation.
منابع مشابه
Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea.
Cells of many organisms accumulate certain small organic molecules--called compatible and counteracting solutes, compensatory solutes, or chemical chaperones--in response to certain physical stresses. These solutes include certain carbohydrates, amino acids, methylamine and methylsulphonium zwitterions, and urea. In osmotic dehydrating stress, these solutes serve as cellular osmolytes. Unlike c...
متن کاملUps and downs of intestinal function with prolonged fasting during aestivation in the burrowing frog, Cyclorana alboguttata.
Although green striped burrowing frogs (Cyclorana alboguttata) experience large reductions in the mass and absorptive surface area of the small intestine (SI) during aestivation, little is known about how this may affect the functional capacity of the SI. We examined changes in the function (l-proline uptake rate and capacity) and metabolism of the SI (in vitro oxygen consumption, Na(+)/K(+)-AT...
متن کاملOsmoregulation in Drosophila melanogaster selected for urea tolerance.
Animals may adapt to hyperosmolar environments by either osmoregulating or osmoconforming. Osmoconforming animals generally accumulate organic osmolytes including sugars, amino acids or, in a few cases, urea. In the latter case, they also accumulate 'urea-counteracting' solutes to mitigate the toxic effects of urea. We examined the osmoregulatory adaptation of Drosophila melanogaster larvae sel...
متن کاملInfluence of elevated temperature on metabolism during aestivation: implications for muscle disuse atrophy.
Reactive oxygen species (ROS), produced commensurate with aerobic metabolic rate, contribute to muscle disuse atrophy (MDA) in immobilised animals by damaging myoskeletal protein and lipids. Aestivating frogs appear to avoid MDA in part by substantially suppressing metabolic rate. However, as ectotherms, metabolic rate is sensitive to environmental temperature, and the high ambient temperatures...
متن کاملCounteracting effects of urea and betaine in mammalian cells in culture.
Urea and methylamines, such as betaine, are among the major organic osmotic effectors accumulated by organisms under hyperosmotic (high NaCl) stress; the mammalian renal medulla also accumulates such compounds in antidiuresis. Studies on isolated proteins show that urea generally destabilizes protein structure, whereas methylamines are generally stabilizers capable of offsetting the effects of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 199 Pt 8 شماره
صفحات -
تاریخ انتشار 1996